# CORRECTION DES EXERCICES

## Exercice 4 page 242

- 1. D'après le tableau, l'état final est atteint à la date, t = 400 s.
- **2**.a. Graphiquement, on obtient  $t_{1/2} = 60$  s.
- b. L'état final du système chimique est atteint au terme d'une durée environ égale à 6,5 fois le temps de demiréaction.

#### Exercice 5 page 242

- 1.  $2 I^{-}(aq) + H_2O_2(aq) + 2 H^{+}(aq) \longrightarrow I_2(aq) + 2 H_2O(1)$
- 2. C'est la coloration du milieu réactionnel en jaune orange, puis brun au fur et à mesure de la formation du diiode qui permet d'en suivre l'évolution temporelle.

**3**.n(
$$I^-$$
) =  $c_1 \times V_1 = 5{,}00 \times 10^{-3} \times 5{,}00 \times 10^{-3} = 2{,}50 \times 10^{-5}$  mol.

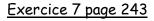
$$n(H_2O_2) = c_2 \times V_2 = 5,00 \times 10^{-3} \times 2,50 \times 10^{-2} = 1,25 \times 10^{-4} \text{ mol.}$$

En regard de la stæchiométrie de la réaction, les ions iodure sont limitants et  $x_{max} = x_f = 1,25 \times 10^{-5}$  mol.

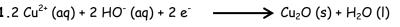
| Equation chimique     |                        | 21-                                 | + | H <sub>2</sub> O <sub>2</sub>   | + 2H⁺ | <b>→</b> I₂                       | + | H <sub>2</sub> O <sub>)</sub> |
|-----------------------|------------------------|-------------------------------------|---|---------------------------------|-------|-----------------------------------|---|-------------------------------|
| Etat du<br>système    | Avancement<br>(en mol) | $c_1 \times V_1$                    |   | c <sub>2</sub> x V <sub>2</sub> | Excès | 0,0                               |   | Solvant                       |
| Etat initial          | 0                      | 2,5×10 <sup>-5</sup>                |   | 1,25×10 <sup>-4</sup>           | Excès | 0,0                               |   | Solvant                       |
| Etat<br>intermédiaire | ×                      | 2,5x10 <sup>-5</sup> -2x            |   | 1,25×10 <sup>-4</sup> -×        | Excès | ×                                 |   | Solvant                       |
| Etat final            | × <sub>f</sub>         | $2,5 \times 10^{-5} - 2 \times_{f}$ |   | 1,125×10 <sup>-4</sup>          | Excès | X <sub>f</sub> = X <sub>max</sub> |   | Solvant                       |

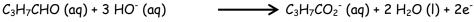
Si les ions iodure sont limitant alors  $2.5 \times 10^{-5} - 2x_f = 0$  soit  $x_f = x_{max} = 1.25 \times 10^{-5}$  mol

4.


**5**. A la date 14 min,  $[I_2] = 1,25$  mmol.L<sup>-1</sup> soit :

$$[I_2] = n(I_2) / V \text{ mol.L}^{-1}$$

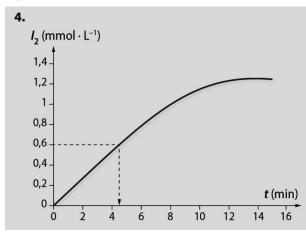

d'où 
$$[I_2] = 1,25 \times 10^{-5} / 10 \times 10^{-3} = 1,25 \times 10^{-3} \text{ mol.L}^{-1}$$


L'état final du système chimique est donc atteint à cette date.

**6**. Graphiquement,  $t_{1/2} = 4.5$  min.



1.2 
$$Cu^{2+}$$
 (aq) + 2  $HO^{-}$  (aq) + 2  $e^{-}$   $\longrightarrow$   $Cu_2O(s) + H_2O(l)$ 






On peut donc écrire:

$$2 Cu^{2+}(aq) + 5 HO^{-}(aq) + 2 C_3H_7CHO(aq)$$
  $\longrightarrow$   $Cu_2O(s) + 3 H_2O(l) + C_3H_7CO_2^{-}(aq)$ 

2. C'est la formation du précipité rouge d'oxyde de cuivre qui nous renseigne sur l'avancement de la réaction, et donc l'évolution temporelle du système chimique.



- 3. Comme l'attestent les résultats expérimentaux, cette réaction est lente à température ambiante (milieu toujours bleu si maintenu à  $20\,^{\circ}C$ ) et est accélérée (apparition du précipité quand le milieu est porté à  $40\,^{\circ}C$  ou à ébullition) lorsque l'on chauffe le milieu réactionnel.
- 4. Le butanal est sujet à l'oxydation par le dioxygène de l'air. La température est un facteur cinétique : abaisser la température conduit à ralentir la réaction chimique dont est le siège un système. Placer au réfrigérateur le beurre permet donc de ralentir la réaction d'oxydation dont il est l'objet.

#### Exercice 17 page 245

- 1. L'acide sulfurique est un catalyseur de réaction.
- 2. Le montage à reflux permet d'augmenter la température du milieu réactionnel et donc de diminuer la durée de son évolution sans perdre aucun réactif ou produit. (cf page 587 du livre)
- 3. La réaction considérée est lente. Pour autant, la connaissance du système chimique, à une date donnée, nécessite de stopper l'évolution de ce système à cette date. On procède donc à son refroidissement.
- **4**. Le prélèvement laisse apparaître le seul acide salicylique. Celui-ci ayant disparu dans le prélèvement, on peut considérer que l'état final est certainement atteint à la date t = 15 min.

## Exercice 18 page 245-246

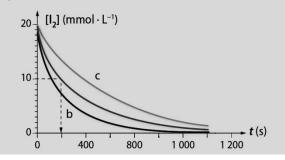
- 1. Le diiode confère une coloration orangée aux solutions qui le contiennent. Sa disparition progressive pourra donc être suivie par spectrophotométrie.
- 2. Vérifions que la quantité de diiode correspond à l'avancement final.

Pour V = 1 L on a:

| Equation chimique     |                        | I <sub>2 (aq)</sub>           | + Zn <sub>(s)</sub> | $\longrightarrow$ | 2I <sup>-</sup> (aq)                | + Zn <sup>2+</sup> (aq)           |
|-----------------------|------------------------|-------------------------------|---------------------|-------------------|-------------------------------------|-----------------------------------|
| Etat du<br>système    | Avancement<br>(en mol) | $c_1 \times V_1$              | Excès               |                   | 0                                   | 0                                 |
| Etat initial          | 0                      | 20×10 <sup>-3</sup>           | Excès               |                   | 0,0                                 | 0,0                               |
| Etat<br>intermédiaire | ×                      | 20×10 <sup>-3</sup> -×        | Excès               |                   | 2x                                  | ×                                 |
| Etat final            | × <sub>f</sub>         | $20 \times 10^{-3} - x_f = 0$ | Excès               |                   | 2x <sub>f =</sub> 2x <sub>max</sub> | X <sub>f</sub> = X <sub>max</sub> |

On suppose que le zinc est en excès car il est apporté sous forme de métal. On a donc  $x_f$  =  $n(I_2)$  initial Graphiquement, on lit  $t_{1/2}$  = 180 s.

3. La température étant un facteur cinétique, elle influence la durée d'évolution du système chimique.


En l'augmentant, on diminue la durée d'évolution du système (courbe b).

#### **4**.a.

b. La concentration étant un facteur cinétique, elle influence la durée d'évolution du système chimique.

En la diminuant, on augmente la durée d'évolution du système (courbe c).

**b.** La concentration étant un facteur cinétique, elle influence la durée d'évolution du système chimique. En la diminuant, on augmente la durée d'évolution du système (courbe **c**).

