CORRECTION DES EXERCICES

Exercice 5 page 334:

1. On utilise la formule pH = - log $[H_3O^+]$. On calcule :

vinaigre : pH = 3,1 ; eau pure : pH = 7,0 ; eau de Javel : pH = 11,5.

2. Le vinaigre a un pH inférieur a 7,0, il s'agit donc d'une solution acide ; l'eau pure est neutre et l'eau de Javel est une solution aqueuse basique.

Exercice 10 page 335:

Les couples acide-base sont : H_3O^+/H_2O

HCO₃⁻/CO₃²-HCOOH/HCOO⁻ HSO₄⁻/SO₄²-

Exercice 12 page 335:

Les concentrations sont indiquées en mol.L-1.

	рН	[H ₃ O ⁺]	[HO ⁻]
Solution 1	2,6	$2,5 \times 10^{-3}$	4.0×10^{-12}
Solution 2	4,3	$5,2 \times 10^{-5}$	1.9×10^{-10}
Solution 3	10,9	1.3×10^{-11}	7.8×10^{-4}

Exercice 15 page 335:

L'équation de la réaction est :

$$AH(aq) + H_2O(l)$$
 $A^{-}(aq) + H_3O^{+}(aq)$.

2. a. On construit un tableau d'avancement, qui fournit directement l'expression de xmax = $c \cdot V = 5,0 \setminus 10-3$

La quantité maximale d'ions oxonium pouvant être formée est notée x_{max}

Equation chimique		AH _(aq) +	H₂O —	→ A⁻ _(aq)	+ H ₃ O ⁺ (aq)
Etat du système	Avancement (en mol)	n(AH)	Solvant	n(A ⁻)	n(H₃O⁺)
Etat initial	0	cxV = 5×10 ⁻³	Solvant	0,0	0,0
Etat intermédiaire	×	5×10 ⁻³ - ×	Solvant	×	×
Etat final	Xf	5×10 ⁻³ -× _f	Solvant	X _f	$x_f = 3,17 \times 10^{-4}$

On calcule la quantité de matière d'acide présente au début $n(AH) = c \times V$ soit $n(AH) = 0.025 \times 200 \times 10^{-3}$ mol d'où $n(AH) = 5 \times 10^{-3}$ mol

On peut calculer l'avancement final grâce à la quantité de matière d'ion oxonium présent en solution :

$$n(H_3O+) = [H_3O+]xV = 10^{-pH}xV \text{ d'où } n(H_3O+) = 10^{-2.8} \times 200 \times 10^{-3} = 3.17 \times 10^{-4} \text{ mol}$$

On en déduit $n(A^{-}) = xf = 3.17 \times 10^{-4}$ mol et n(AH)f = n(AH) - xf soit $n(AH)f = 4.68 \times 10^{-4}$ mol

On s'aperçoit que x_{max} est tel que $n(AH)-x_{max}=0$ d'où $x_{max}=5\times10^{-3}$ mol

b. La concentration finale en ions oxonium vaut

$$[H_3O^+] = 10^{-pH} = 1.6 \times 10^{-3} \text{ mol.L}^{-1}$$
.

La quantité d'ions oxonium formés est obtenue en multipliant la concentration précédente par le volume $V: n(H_3O^+)f = [H_3O^+] \times V = 10^{-2.8} \times 0,200 = 3,2 \times 10^{-4} \text{ mol}.$

c. La quantité d'ions oxonium formés est inférieure à la quantité maximale pouvant être libérée : la réaction entre l'acide ascorbique et l'eau n'est pas totale donc l'acide ascorbique est un acide faible.

Exercice 21 page 336:

- 1. Cette amine a des propriétés basiques en solution car le pH de la solution est supérieur à 7,0.
- 2. La formule de l'espèce conjuguée de cette amine est l'ion triméthylammonium $(CH_3)_3NH^{\dagger}$. Le couple acide-base correspondant est :

 $(CH_3)_3NH^+/(CH_3)_3N.$

- 3. $(CH_3)_3N(aq) + H_2O(1) \rightleftharpoons (CH_3)_3NH^+(aq) + HO^-(aq)$.
- 4. Le pH est supérieur à la valeur du pKa : c'est donc la forme basique, la triméthylamine, qui prédomine en solution.
- 5. La constance d'acidité de ce couple s'écrit :

$$K_{a} = \frac{[(CH_{3})_{3}N] \cdot [H_{3}O^{+}]}{[(CH_{3})_{3}NH^{+}]}.$$

$$Ainsi \frac{[(CH_{3})_{3}N]}{[(CH_{2})_{3}NH^{+}]} = \frac{K_{a}}{[H_{2}O^{+}]} = \frac{10^{-pK_{a}}}{10^{-pH}} = 10^{-9.8 + 11.5} = 50.$$

Ce résultat montre à nouveau la prédominance de la forme basique.

Exercice 17 page 336:

1. a. L'équation de la réaction entre l'acide nitreux et l'eau :

$$HNO_2(aq) + H_2O(1) \rightleftharpoons NO_2^-(aq) + H_3O^+(aq).$$

b. L'équation de la réaction entre l'ion méthanoate et l'eau :

$$HCOO^{-}(aq) + H_{2}O(I) \iff HCOOH(aq) + HO^{-}(aq).$$

2. a. Les diagrammes de prédominance sont :

b. Le pH de la solution d'acide nitreux est inférieur au pKa du couple, c'est donc l'acide conjugué HNO_2 qui prédomine ; le pH de la solution d'ion méthanoate est supérieur au pKa du couple, c'est donc la base conjuguée $HCOO^-$ qui prédomine.

COMPRENDRE: C2. Réaction acide-base et pH